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In this work we give the exact solution of the model describing the scattering of 
conduction electrons by an impurity in the orbital singlet state (so-called n- 
channel Kondo problem). Depending on the relation between the impurity spin 
S and the number of electron scattering channels n, the model behaves 
differently at low energies. At n ~< 2S the effective charge increases to infinity at 
low energies, whereas at n > 2S it tends to a finite fixed point. The model under 
study is the first example of the one-dimensional quantum field theory exhibiting 
scaling behavior. 

KEY WORDS:  Kondo problem; dilute magnetic alloys; renormalization 
group; scaling; fixed point; Bethe Ansatz. 

1. INTRODUCTION 

Recently it has been shown that many traditional models which are conven- 
tionally used to investigate properties of dilute magnetic alloys are 
completely integrable and their exact solution has been obtained on the basis 
of the Bethe-Ansatz technique (see review, Refs. 1-3). The intriguing 
exception was the so-called multichannel Kondo model the exact solution of 
which has not been so far derived although all experts agree that it exists. 

The Hamiltonian of the multichannel Kondo model is 

= 3 ( k -  + Ckmcr Ckmo -~- J ~ + C~mo%o,Ck,mo,S (1.1) 
k,rn,a k,k' 

m,a,cr' 

We suppose that the electron plane wave are expanded in spherical waves 
with a center placed in the impurity point. Impurity interacts only with that 
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partial wave which have l = l 0 (l 0 is an unfilled impurity shell). The state of 
the partial wave is characterized by a modulus of momentum k, projection of 

+ an angular momentum m (m---10, . . . ,  10), and spin a. Ck,~, is a creation 
operator of this state. 

The direct application of the Bethe method to this model meets with a 
difficulty which is accounted for by the incorrect treatment of high energy 
processes in the framework of the naive Bethe-Ansatz scheme. 

The multichannel exchange Hamiltonian seems to be the most 
interesting among the Kondo models both from the "magnetic" and field 
theory points of view. First at n -- 2S the Hamiltonian (1.1) is realistic and 
describes three-dimensional impurities with half-filled atomic shell. In this 
case Hund's rule asserts that the ion ground state is an orbital singlet with 
the spin S = l + 1/2 (therefore the model is often reffered to as the "Kondo 
problem for the orbital singlet.") This is the case with Mn which has n = 5 d 
electrons and the configuration 6S5/2. The scattering therefore involves only 
exchange of spins, whereas the projection of the orbital angular momentum 
of the /-electron wave remains unchanged. ~4~ 

An orbital singlet may also appear as the result of the combined action 
of Hund's rule and the crystal field. This holds for V ( n - - 3 )  and co- 
impurities (n = 8) in a cubic crystal field. ~5) At n 4= 2S the Hamiltonian (1.1) 
can serve as a model except the exotic case of alloys with extremely low 
Kondo temperatures when the Kondo temperature is compared with 
hyperfine coupling. 

Second the model with n > 2S serves as a unique example of the 
quantum field theory which is asymptotically free and has a finite infrared 
fixed point. 

In all known asymptotically free quantum one-dimensional field theories 
the effective interaction increases rapidly with a decrease of the energy scale 
until the unitary limit is achieved. Such a dramatic role of the interaction in 
the formation of the ground state of the system is primarely due to one 
dimensionality and the common lore is that in such systems the fixed point 
can be either zero or infinite. 

Recently, Nozieres and Blandin (5) in their work have pointed out that 
the multichannel Kondo Hamiltonian (1.1) in the case n > 2S is the first 
exception from the rule. z 

They have given simple plausible arguments that the fixed point of the 
Hamiltonian (1) is finite at n > 2S and corresponds to some finite exchange 
interaction J*.  As a consequence all physical quantities should obey the 
scaling power low at small energy scale. For all n ~< 2S the fixed point 

2 The second exception is the Wess-Zumino chiral field theory, t6~ which is close to the model 
under study. 
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corresponds to the strong coupling limit. Here we give the Bethe-Ansatz 
solution of the model for arbitrary n and S and investigate qualitatively three 
different cases: n = 2S, n < 2S, and n > 2S. The results of the present work 
have been briefly published in Ref. 7. 

2. NOZlERES AND BLANDIN ARGUMENTS AND COMPARISON WITH 
THE EXACT SOLUTION 

It is well known that the exchange Hamiltonian (1.1) is renormalizable 
(see, for instance, Refs. 8 and 9). It means that all physical quantities depend 
on the energy scale e, Fermi energy e r ,  and bare coupling constant J only 
through dimensionless value e/TK, where T K is the Kondo temperature 
dependent on J and er. The conventional method of describing renor- 
malization properties of the theory is to consider the effective-dependent 
exchange amplitude z(e) satisfying the Gell-Mann-Low equations 

- fl(z, n), Z(eF) = J (2.1) 
d l n e  

Then physical quantity (for instance, impurity magnetization Mimp(H/TK) 
satisfies the equation 

d l n M  
d In H - f ( z ( H ) ) ,  M(eF) = S (2.2) 

The function fl(z) and f ( z )  can be treated by perturbation theory, the two- 
loops contribution of which for the model (1.1) is (~) 

fl(Z) = --z2 + n z3 + O(z4), f ( z )  = --z 2 + O(z 4) (2.3) 

It means that 

where 

Mimv(H/TK) = S -  ~" a.z'~(H/TK) (2.4) 
r / = l  

z o l - - n l n z o = l n H / T K ,  ZO(eF)=J (2.5) 

and a 1 = S. In particular, it follows from these equations that the weak 
coupling limit is unstable and is a repulsive fixed point at the 
antiferromagnetic exchange. The effective charge increases with decreasing 
energy scale. And vice versa at the ferromagnetic interaction the weak 
coupling limit is stable and is an attractive fixed point. 
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What is the value of the charge in the stable (repulsive) fixed point in 
the case of the antiferromagnetic exchange? 

At n = 1 numerous researches testify to the fact that is the strong 
coupling limit. 

This fact is also established on the basis of the exact solution of the 
n = 1 problem. ~1~ There is no doubt that the strong coupling limit is the 
stable fixed point for n ~< 2S. 

Nozieres and Blandin in their work have given convincing qualitative 
arguments that it is not true for n > 2S. Let us repeat briefly their 
arguments. 

First consider the case n < 2S. Clearly, in the string coupling limit the 
impurity traps as many electrons as it is permitted by the Pauli principle, i.e., 
one electron with a spin opposite to the impurity spin per an orbital channel. 

The electrons cannot quench the impurity spin completely and it 
remains magnetic with the spin S - n / 2  (see Fig. la). This complex can 
interact with other electrons and generate a new Kondo effect. But the new 
exchange amplitude is ferromagnetic in that only electrons with the spin 
antiparallel to the bounded electrons can interact with the impurity complex 
and decrease the energy. But their spins are parallel to the spin of the 
impurity complex and therefore the new exchange is ferromagnetic. Therefore 
the strong coupling limit is a stable fixed point. It means that at H-~ 0 the 
magnetization mimp(H )--~ S -  n/2,  and the approach to this fixed point is 
governed by the logarithmic law due to the new Kondo effect: 

Mimp(H ) = (S  - n /2 )  (1 
1 ) 

l n H / T  K ~-"" at H ~  T K (2.6) 

At n = 2S the low-energy fixed point corresponds also to the strong coupling 
limit. The ground state is nondegenerate and is formed by a singlet 

a) b) 
Fig. 1 

g'-- %-S 



Exact Solution of the Multichannel Kondo Problem 129 

Z ='~a ~ = ~ ' ~  2 = 0  

Fig. 2 

combination of one impurity electron and one conduction electron in each 
orbital channel. In this situation the Nozieres Fermi liquid picture is 
applied. (m The polarizability of the ground state is finite at H - ,  0: 

Mimp(H ) = H/27tT K + O(H'/T~) (2.7) 

At 2S < n again an electron with the spin opposite to the spin of the 
bounded electrons can interact with the impurity complex but now this 
interaction is antiferromagnetic (see Fig. lb). Therefore the strong coupling 
limit is unstable. The scaling trajectory are then locked between the two 
unstable points and must converge to a finite fixed point. It means that the 
Gell-Mann-Low function has a zero fl(z*)= 0 (Fig. 3), and 

fl(z)=flo. (z--z*) ,  f ( z ) = a  o �9 (z - -z*)  (2.8) 

As a conclusion the physical quantities have power law scaling behavior at 
the small energy scale. For example, 

Mimp(H ) = (H/TK) ~~ (2.9) 

where fl0 is a number dependent only on n and 2S. 

\ 

Fig. 3 
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Below on the basis of the exact 
expression for the impurity magnetization: 

Mimp(H ) = (S - n/2 ) O( S - n/2 ) 

solution we obtain the explicit 

in ( + ~ d09 
4~ --y/2 )-~o 09 - i 0  

X exp[2i091n(H/Tn)] • ( i09n+ O) i'n 

F(1 + i09)r(�89 --i09) 
• [exp(--x In - 2SI 1091)] 

F(1 + i09n) 

- exp [-7~(n + 2S) 1o9 [)][1 - exp(-2~zn 109 I)] -1 

2zc(n/2e) ~/2 
F(n/2 ) TK , T K is the Kondo temperature, 

0 is a 0 function 

(2.10) 

Compare this expression with the perturbation theory and Nozieres- 
Blandin prediction. First, let us consider the high magnetic fields H >> T K 
where the perturbation theory is valid. Introducing zo(H ) through Eq. (2.5) 
and deforming the integration path to the upper half-plane to envelop the cut 
of (i09n + 0) i 'n we obtain 

1 ;: dt e _ 2 t  sin lrnzot sin 2z~Szot 
M i m  p = S - -  ~ -'7- sin z~z 0 t 

F(l +nzot)F(l +zot) (~_) ~ot 
• F(1 + Zot ) 

= S - ~ zko(H/T~) ax(S, n) 
k=l  

(2.11) 

The strong dependence of Mim o on n and 2S arises in the low-energy 
regime (H ~ Tk). The character of the singularities of the integrand in the 
lower half-plane depends on n and 2S. At n < 2S there is a cut and we 
obtain 

Mim p = S - -  n/2 + ~ ak(S - n/2, n) Zko(n/Tr) + O(H/TK) (2.12) 
k= l  

At n = 2S there is only poles in integer point the lower half-plane. Then we 
have 

Mimp - -  ~ k=O \---~H ] F(n(k + �89 
{n[(k + �89 }"(k+ 1/2)(--1) k 

k! (2k + 1) 
(2.13) 
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Finally at n > 2S poles in noninteger points appear: 

Mim o = ~.~ bk + Ck 
k = l  k=0 

131 

(2.14) 

3. THE ANDERSON MODEL AS A REGULARIZED VERSION OF THE 
EXCHANGE HAMILTONIAN 

As we have claimed in the Introduction the attempts to diagonalize the 
Hamiltonian straightforwardly by the Bethe-Ansatz technique encounter a 
difficulty. To demonstrate it let us recall that two physically clear approx- 
imations are necessary for an exchange model to be integrable31-3~ These are 
(i) the linear spectrum approximation, (ii)the pointlike interaction approx- 
imation. 

The both approximations are no doubt valid for physical particles. 
However in the Bethe-Ansatz approach one should start from the bare 
vacuum (unfilled Dirac sea) and deal with "bare" particles. Sometimes 
application of both approximations to bare particles is not so bad and allows 
to obtain correct universal properties of the system. ~ 

Here it leads to physically meaningless results and makes it impossible 
to correctly take into account high-energy processes. More exactly, this 
approach makes it impossible to take into account to interpret correctly the 
axial anomaly. 

In fact the scattering matrix of a bare Dirac electron by the pointlike 
impurity does not depend on the energy of the particle. In our case due to the 
SU(2) | SU(n)  symmetry of the exchange it is the tensor product of the 
matrices acting on the spin and orbital spaces: 

m ,  m l ~ _ _ _  

m'o';s' [exp(Uo S o's' Sma;s  = �9 ) los  6mm , 

.... , ; a ,  a '  = + --ff , s ,  s '  = - S  ... . .  + S  

(3.1) 

As a result of the particle-particle factorization multiparticle processes 
in spin and orbital channels seem to be independent312~ To make sure that 
this result is invalid, suffice it to consider the two-loop diagram in the 
standard perturbation theory where the spin and orbital processes are 
coupled [Eq. (2.5)]. 

Here we give up the pointlike approximation and consider the orbital 
degenerate Anderson model of a special type which serves us as a 
regularizer. 
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The Hamiltonian (1.1) is the version of the following Anderson model: 

~,W= ~ v r ( k - k v )  + C km~ C km,~ 

+ v (C m dmo+ + H.c.) + (3.2) 
k , m , c r  

~aatom=Ed E + U d m o d m a - - - f  ~'  d+ad+m,a,dm,adma, (3.3) 
m~G m~m I 

In the absence of the hybridization ( V =  0), the ground state of the atomic 
shell is at 0 <  U ( n - 1 ) / 2  < E a <  U ( n + 2 ) / 2  a orbital singlet (nd=n ,  
S = n/2, L = 0). For the sake of simplicity we deal only with the asymmetric 
case and consider the hybridization only of the states n a = n and n a = n - 1, 
i.e., the parameters satisfy the condition 

U +  ca~2 > F 

where - -ed=2Ea - U(n- -1) ,  F = z ~ p ( e r ) V  2. The models (1.1) and (3.2), 
(3.3) become equivalent under the condition 

--e a > nF (3.4) 

Actually the states which are not an orbital singlet should be considered only 
as virtual and then the Schrieffer-Wolf transformation leads us to the 
exchange Hamiltonian (1.1) at n = 2S. 

The application of Bethe-Ansatz technique to the Anderson model (3.2), 
(3.3) does not encounter difficulties. Below we shall give the solution of this 
model and perform the limit (3.4). 

4. BETHE-ANSATZ SOLUTION OF THE ANDERSON MODEL 

One can obtain the solution of the model (3.2), (3.3) by glueing 
together the Bethe-Ansatz solutions for the SU(2)- and SU(n)-invariant 
Anderson models. These models are described in details in Refs. 1 and 14 
(see also Ref. 3). The case in that due to the S U ( 2 ) Q  SU(n) symmetry of 
the Hamiltonian (3.2), (3.3) the particle-particle S matrix is also tensor 
production: 

S(k  - p)  = S~(k - p )  | Sm(k - p )  (4.1) 

but it now depends on the energy of the particles. Here S ~ is the S matrix of 
the nondegenerate Anderson model with repulsion on the atomic shell, it acts 
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on the spin space; S m is the S matrix of the degenerate Anderson model with 
attraction, it acts on the orbital space ~13'14) 

S"(k) -=- (k + 2riP~)/(k + 2iF) (4.2a) 

Sin(k) = ( k -  2 i rPm) / ( k -  2iF) (4.2b) 

where Pc,, Pm are permutation operators. 
The electron scattering phase by the impurity is 

~t(k) = 2 t an - '  ( ~ f  ~A ) (4.3) 

Imposition of the periodic boundary conditions to the Bethe wave function 
leads to the eigenvalue problem: 

exp[ikjL + i•(kj)] = Sjj+~(kj - -  k j + l )  . . .  SjNSj1 " ' "  S j j _ l ( k  j - -  kj_l) 

solution of which can be found when the spin (~3) and orbital Clg) Bethe 
Ansiitze are glued together: 

exp(2iF)~}~ el()~} ~ - ce/zr)  = t~ ~ t m ()~jco)) (4.5) 

where t ~''n are the eigenvalues of the operators 

N 

= S j,(2 - 2p ), (a = o, m) 
p = l  

P*J (4.6) 
e,(x) = (x - in/2)/(x + in~2) 

The eigenvalues of the Hamiltonian (6) are 

N 

E = 2/" ~ )~s(. ~ (4.7) 
j = l  

and they do not split into independent spin and orbital parts. They are 
coupled by Eq. (4.5) owing to the energy dependence of the bare S matrix. 
The eigenvalues t "'m are determined by the Bethe-Ansatz hierarchies: 

M 

t"(2}~ = [ I  e l (~}~ (4.8a) 
o t = l  

N M 

~1 e l ( A ~ - 2 ~  ~ --- [ l  e z ( A ~ - A s )  (4.88) 
j = l  /3=1 



134 Tsvelick and Wiegmann 

re(l) 

tm(~'} ~ = H el(/'t~ 1) _ ~,}o)) (4.8c) 

m(J+z) re(J} 

FI  FI  ' = el~t~ 1~ ezt~" z, u) (4.8d) 
*--:t:1 3=1  B-1  

where m {~ - N -  is the total number of particles, M = N / 2 - S  z is the 
number of particles with up spin, 

m{J)= ~ n k (4.9) 
k = j +  1 

where n k is the number of particles with the [(n + 1)/2 - k]th projection of 
the angular momentum. The total spin and orbital projection are 

S z 3 [ / 2 - M ,  LZ (n - -  1)N n - - 1  = - ~ mj (4.10) 
2 j = l  

5. SPECTRAL EQUATIONS 

The gluing of the two hierarchies (4.8) brings out considerable 
sophistication of the ground state. 

At first let us give the classification of the solution of Eqs. (4.8) in the 
thermodynamic limit. 

(a) The pairs of rapidities 2(~ can form the bound state with some 
As: 

~(o) = A  + i/2 (5.1) 

Let e ( A )  and d(A)  be distributions of these As and their holes. 

(b) Let p(2) and /~()~) be distributions of the unbounded real 2s and 
their holes. 

(c) The others As and the orbital rapidities pU)s can form the 
complexes of the order m = 1, 2,..., oo: 

A{m'k' = A{m) + i ( m+12 k) 

P}m'k)=~t~)+i (  m+12 k) 

(k = 1,..., m) (5.2a) 

(k = 1,..., m) (5.2b) 

Let e m, d m and xU),n, K~') be distributions of centers of the complexes and 
their holes. 
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Performing the necessary manipulations we obtain the spectral 
equations for a set of distributions (3'15) (for a general techniqualities see 
Ref. 16). 

F 1 
- -Tr  + Z- a1(2 - -  ~ d / 2 F )  = i f (2 )  + p ( 2 )  + a I �9 0 ( 2 )  + a m �9 Gm(2 ) 

. (1) (5.3a) - -  s * A l m  * ~rn 

21" 1 
t- a2(2 - ea/zr) = d(2) + (1 + a2) �9 a(2) + a I �9 p(2) 

- s * A2m * K~)(2) (5.3b) 

(a t * p + azt  * S * a) ~ ,  = ff}J) + A t , ,  C Jk , x~p ~) (5.3c) 

at * P = at + Atp * a ,  (5.3d) 

The energy, spin, and orbital moment of the state described by the set of 
distributions (5.3) are 

r - 2 r  2 ,  , /~ 2(2a(2) +p(2)) d2 (5.4a) 

N ~,+,/2r 
T = 2 - e,-,/zr a(2) d2 + I p(2) d2 (5.4b) 

L p(2) d 2 -  ~ m f a m ( 2 ) d 2  (5.4c) 
m = l  

L = T -- ~ m X(mJ')(2) d2 (5.4d) 
m = l  j = l  

where ~(+)  are the edges of the conductive band. Here we used the 
convolution symbol 

f ,  g(2) = f (2  -- 2')  g(2') d2' 

and notations 
2 It/ 

a m ( 2  ) - n m E + 422 

s(2) = (2 cosh :r2)-1 

Ann(2) = - ~ - - f _ ~  do9 e -i~ coth 
2 

X [e -(n-m)r~~ - e -(n+m)l~~ 

(5.5a) 

(5.5b) 

(5.5c) 

(5.5d) 
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Note also some properties of the matrices which we shall use below: 

(f',(n)~-l__d(n)(]~ f+oo 
i... ]jk ~ Zajk k'~J 

~--00 

e -  io, a 2coth 
co sinh[min(j, k)o)/2] 

2 sinh(nco/2) 

dfD 
• sinh[(n - max(j,  k))co/2] 2zc 

A (~176 =A,  C (~176 = C 

A mk - -  A mn A 2,,IA nk = A mk ( ' )  

(5.6a) 

(5.6b) 

(5.6c) 

6. THE GROUND STATE 

We shall show here that the ground state is formed by coupled as (5.1) 
and the two order orbital complexes/a~J)s (5.2b). In other words, only a and 
tr j) are nonzero. The other distributions p = (7 m ~--K "(j)= 0 (g/ :~ 2) in the 
ground state. 

The energy of the distribution (5.4a) is a monotonic function of the 
rapidities. As a consequence, in the ground state all "particles" occupy half- 
opened intervals: 

~r(a) = 0 at a o < a < Q  (6.1) 

where Q is yet an unknown parameter. 
The integral f a (a)d2 diverges at 2 ~ - o o .  It is a consequence of the 

initial linear spectrum approximation which leads to an unbounded 
spectrum. Therefore one should treat all as as restricted in the interval 
( --ff(-) /2F,  ~r(+)/2F) where ff~• are Edges of the energy band. So one 
should replace the term which corresponds to the density of states of the host 
metal [the first term in the left-hand side of Eq. (5.3b)] with the term 

~0(~.)= 2r  0 ,~ 0~Jt + ~ )  (6.2) 
\ 2F 

The lower edge ~r<-) is related to the total number of particles: ~ - )  is 
related to the total number of particles: ~<-)  = r r N / L .  Integrating Eq. (5.3a) 
we find 

fo~ if(a) d)l. = ~ (+ ) /n  (6.3) 
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Therefore in the physical ground state the spectral Eqs. (5.3) are 

1 m (6.4) r/o(2) + ~-  a2()~ -- g a / 2 F )  = 8(2) + (1 + a2) * a(2) -- s * ,422 * K 2 

6j,s * 0(2) = C ik * took)(2) (6.5) 

To find the parameter Q one should find the host part of d from Eqs. (6.4), 
(6.5) and satisfy the condition (6.3): 

1 2 = r/0(X) + ~-  a2( -- ~d2r )  (6.6) 

where 

1 (+oo s inh[(n--  2)~o/2] 
3-(2) = ~ J-m &o e -i~oa-I~ol (6.7) 

sinh[nco/2] 

From Eq. (6.6) and (6.3) we find 

Q _ (n - 2 ) i n  ~+)/2F + O(1) (6.8) 
2~r 

Below we use the renormalized level 

e *  = e d - 2FQ (6.9) 

One can check that the ground state described by Eqs. (6.4), (6.5) is an 
orbital singlet. 

To prove the hypothesis of the ground state and to find the physical 
properties it is convenient to rewrite the spectral equations in terms of the 
excitations under the physical ground state. Then we shall use & g<m J) instead 
of a and tr ). 

Inverting the kernels in Eq. (5.3) and substituting K~ ~) into (5.3a,b) we 
obtain 

- -  j l  * S * (~ml  P -~- ~m2 G) - -  Crop * g'ljk * 

2F 1 2 - -~  + -~a2( - ~ /2r )  = 8 ( k )  + J  �9 [o (k)  + s �9 p (k) ]  

+ s * A~)*  g~)(2) (6.10b) 
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F 1 
- - +  a l ( j ` - - % / 2 F ) = i ( j ` ) + ~ r ,  [ s ,  a ( j ` )+  (1 + a 2 ) - '  * P(J`)] 

T 
+ a m ,  am(j,) + sAWn), ff]k)(j`) (6.10c) 

Furthermore,  excluding cr from (6.10b,c) and employing (5.6) we have 

1 
S * d(j`) + - ~  S(j` -- gd/21") = if(j`) + Ann 1 * if(j`) AV a m * am(j` ) 

oa (,),~(k) ~2n ~,),r(k) (6.11) -~-O~Xlk,~ 1 - - , ~  z~t l k  ~ 2 

Now consider the new monotonic function e ( j ` )=e (+ ) ( j ` )+  e(-)(j`) where 
e + >  0 and e - <  0 are positive and negative parts of this function. Let 
e(Q) = 0 and e(:~)(j`) satisfy the equation 

e(+)(j`) + J * e(-)(2)  = 4F J` (6.12) 

After the simple algebra one can rewrite the energy of the state in terms of 
excitations only: 

f2 ;~ E = E (~ + e(+)(j`) a(j`) d j` - e~-)(j`) d(j`) d j` 
oC3 

- s * A p ( ] ) *  e ( ) * R~P) + s *  e (+) * p  (6.13) 

where E (~ is the ground state energy. 
Equations (6.13) prove the hypothesis of the ground state structure: all 

terms in (6.13) are positive. Conclusion: the energy minimum is achieved at 

d(j` < Q) = p(j`) = Y~)(2) = 0 (6.14) 

It follows from Equations (6.10) that 

am(j` ) = 0, x~)(j`) = 0 (m 4: 2) 

Note that the auxiliary function e(j`) is expressed in terms of the ground state 
distributions a0, d 0 [Eq. (6.6)] 

1 de c ) 1 de c+) 

a ~  2~r d j` ' d ~  2~r d2 (j`) 

7. K O N D O  L IMIT  

Now we can derive the spectral equations in the Kondo limit Q >> 1 
when F >> T K ~ F exp(e*/21").  Quite similar to Ref. 16 we should take if(j`) in 
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(6.10) in the physical ground state, given by Eq. (6.6) and use only the 
leading asymptotic term 

oo 

s (2 -~ , ' ) do (2 ' )d2 '  _~e~a~ e-~'t'do(~,')d2 ' =.=-Ae '~ (7.1) 
" 0  

The first term in (6.13) describes charge density excitations which in the 
Kondo limit is decoupled from the magnetic excitations. The second term in 
this limit becomes 2Ae~'tp(2) d2. With the same accuracy e x p ( e ~ / 2 F )  ~ 1 we 
should also consider tc~2 j) to be in the ground state, i.e., Y~J)= 0 and x~2 J) is 
given by (6.5). 

Then, according to (6.13) and (6.10a) Y~J) together with ~c~ ) (m > 2) 
excitations are decoupled from the impurity. From (6.10a) we get that K~ j) 
are decoupled, in this case from x~ ). The equation for Y~J) 

A (,) ,~(k) __ a (n)~. p (j  -- 1 ..... n -- 1) (7.2a) K~ j )  Jr- ~ t j k  * r~ 1 - -  LXjl  

together with equations where all arguments are shifted to 2 ~ )~- l/re In A: 

c, A (n) lT(m) p(~,) + A n n  1 * p(2) + a m * ~Tm()~ ) + ~,za l m , ~  1 

= e -~a + ( l /L)  s(2 + 1/J) (7.2b) 

1 e~ 1 In A (7.2c) am P = (~m ~- A mk * ok, j 2F  

are the universal spectral equations for the physical excitations in the Kondo 
limit. 

In the ground state with the given spin projection p v~ 0, Yl i) = 0, crz = 0. 
Then the distributions p and/~ satisfy the equation 

1 
#(;0 + A ; : �9 p(;O = e + T + 1/J) (7.3) 

where owing to monotonic dependence of the energy density on the rapidity 

p ( 2 ) = 0  at 2 > - B ,  ~ ( 2 ) = 0  a t , ~ < - B  

The parameter B is defined by the condition 

1 f --B 

SZ = z J_--g- ] oo p(2) d2 (7.4) 

Below we shell investigate Eqs. (7.3), (7.4) to find the impurity 
magnetization (2.11). 



140 Tsvelick and Wiegmann 

8. THE EQUIVALENT MODEL AND GENERALIZATION FOR 
ARBITRARY IMPURITY SPIN 

As has been mentioned in Section 3 the Anderson model (3.2) yields an 
integrable regularized version of the exchange model (1.1) only for n = 2S. 
Unfortunately, generalization of the integrable Anderson model for arbitrary 
impurity spin is unknown. Therefore it is important to find the proper 
regularization of the exchange Hamiltonian. 

Here we will give such regularization. 
First introduce the notations. Let v; (~) (p = 1,..., n) be a linear space of 

the �89 particle in the p-channel state, V (2s) is the space of the S-spinor 
impurity. The Hamiltonian can be considered as a linear operator acting in 
the tensor production of these spaces: 

N 
V ~ =  1~ @ ( v~l>@ .=" @ v(1))a V(2S) 

o~=1 

The space v~l)@ ... @ vl~ 1) can be decomposed into a sum of irreducible 
subspaces V (1) with the highest weights A = [m~, mz,. . . ,  rn,] 

(m,  + . . .  + m ,  = n)  

v~" |  | v~" = ~ v (A) 
A 

Let V (') be the space with A = [n], i.e., the space of symmetric n-rank 
spinors. 

We claim that the proper regularization of the exchange Hamiltonian 
(1.1) is to consider it both in the whole space and in the subspace 

N 
w~ = [ I  | (v(")L | v(~) 

In other words only electron states which are symmetric n-rank spinors 
should be taken into account as the low-energy states. The other states give 
no contribution to the low-energy properties of the impurity. 

To give proof first construct an integrable exchange model describing 
the scattering of n-rank symmetric spinors C{al  ..... an} by the spin S 
impurity. Let c o (a = 1 ..... n) be the n/2  spin electron operator. Then a the 
general form of the exchange Hamiltonian is 

= ~ '  (k  --  k r )  + 
k ,a  a ,b  ~ 

k , k '  

(8.1) 

where d = ( fx ,  Sy, S~) is the operator of the spin n/2 ,  and P is still an 
arbitrary polynomial of the order min(2S, n). 
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The electron-impurity S matrix is 

S = exp [UP(S �9 s (8.2) 

For the model to be integrable this matrix should belong to the family t ( u ) ;  
S = S (u = I /J)  satisfy the factorizable conditions: 

 2(u)  3(u + u') =  3(u + u') (8.3) 

Such family is known and is obtained if to apply the bound state fusion 
procedure ~7'18) of tensoring the fundamental S matrices (the both spins are 
�89 (4.2a) 

n 
SAn(u)=PA + l ]  S < b ~ ( u + i ( n + l - k - l ) ) P ~  (8.4) 

k , !=  l 

where A = {a~,..., a,}, P+ is symmetrizator, i.e., a projector to the irreducible 
subspace V ~"). To prove that (8.4) satisfies (8.3) it is sufficient that 

so (i/2) = 

The explicit form of the polynomial is 

n/2 + s i l l  1 - -  i k J  min(n/2,S) 
P(x,  g-) = 2 I I  1 ~ ikJ [ I  x -- x_____2_p 

t=l,/2-sl k=0 p=0 x l - x p  (8.5) 
p ~ l  

xp = ( 1 / 2 ) p ( p  + 1) - (1/2) S ( S  + 1) - (n/4)(n/2 + i)  

The Hamiltonian (8.1) is the projection of the Hamiltonian (1.1) to the 
subspace V~. 

To prove this statement and the validity of the regularization we will 
solve the model below and show that at n = 2S the spectral equations of this 
model and the Anderson model (3.2) are identical. 

9. THE BETHE-ANSATZ SOLUTION OF THE 
EQUIVALENT MODEL 

Application of the Bethe method to the model (8.1) with the approx- 
imations cited in Section 3 does not encounter a difficulty. Imposition of the 
periodic boundary conditions leads to the eigenvalue problem 

eikJL = 2~JJ+l "'" ~NL~J'I "'"-~Ji-~ (9.1) 

This problem is completely solved. 

822/38/I 2-10 
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This fact also helps find a solution of the eigenvalue problem (9.1). It is 
completely solved when the initial 1-rank problem for the operator 

N 

T~(ki) = lq Sip(k,- kp) (9.2) 
p--1 

is solved for arbitrary ks. Actually if (8.2) is used it is clear that 

k = l  2 

where ti is the eigenvalue of T i. 
Using the explicit form of t~ (4.8) we come to the Bethe-Ansatz 

equations: 
M 

exp(ikjL) = H e,,(A,~) (9.4a) 
o~=1 

M 

eU(A,~) ezs(A ~ + 1/J) = ~[ e2(A ~ - As) (9.4b) 
6 - 1  

10. THE SPECTRAL EQUATIONS FOR THE 
EQUIVALENT MODEL 

In the thermodynamic limit all solution are grouped into complexes of 
the order 

A~m'k)=A~m)+i( m + l k ) 2  , ( k =  l,..., m) (10.1) 

Let fm and J~m be distributions of the A (m)s and there holes. Then Eqs. (9.4) in 
the continuous limit are 

1 
Yrnq-Amk*L=-Amn*S(,~)q-~Am,2s*S(,~+ 1/J) (10.2) 

The spin projection is 

S z - N  N ~ mffm(2) d)t (10.3) 2 m = l  

The ground state of the model formed by n complexes is 

fm= 6,inf, (10.4) 
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Therefore to obtain the spectral equations for the physical excitations 
exclude the ground state configuration. Using the properties (5.6) of the 
matrix A mk 

f n+Ann l* fn+am n*fm A(n) - @ m,n-1 S *fm 

=e+'~a + (1/N)A,,zs , A; ,1 ,  sO~ + l/J) (10.5) 

L + n  l + A m k * L + n - l = a r n ? n ,  m , k =  1,2 .... 
A(n) f m + ~ m ~ * f k = A m , . _ l * S * f ~ ,  m , k = l  ..... n - 1  

The energy and the spin projection expressed in terms off~ and fm (m 4= n) 
a r e  

N 
S z = O(s - n/2)(s -- n/2) + ~-  f f~(2) d2 - 

•  fm(2) d2 

(m--n) 
m~n+l 

(10.6) 

E = const + N f s(2)J~(2) d2 (10.7) 

The last expression proves statement (10.4). In the physical ground state 
where S ~ = 0 there no holes in the distribution of n complexes. 

Now let us compare the spectral equations (10.5) and (7.2) for the 
models (8.1), (1.1). Their identity is proved by the relation. 

It proves that the models (1.1) and (8.1) are identical at least at n = 2S. 
Our hypothesis is that it is also true for arbitrary n and S. 

11. THE MAGNETIZATION OF THE IMPURITY AS A 
FUNCTION OF MAGNETIC FIELD 

Consider the Eqs. (10.5) for arbitrary n and S in the ground state with 
a given spin projection. In this state all fm (exceptfn)= 0, f , (2  > - B )  4= 0. 
Decompose the distribution fn into the host and impurity parts: 

1 
fo(,t) =fh(;t) + Z-Amp(X ) (11.1) 

Shifting the arguments in fy i e lds  the universal equations: 

1f~ -~- fh(2) d2 = 1 (11.2a) 
--00 
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1 0 

Mimp = -2- f -  co fimp(~') d/I, 

o 
fhO') + f K(2 -- 2 ' ) fh(2 '  ) d)l,' = e "a, K = --1 + A .-) 

{3O 
0 

limp(J,) -}- f KO]. -- ~.t)fimp(~' ) d), '  
-00 

( 1  ) 
=A2nl *An,2s*S 2 +--InH/TH 

7~ 

(11.2b) 

( l l .3a )  

(11.3b) 

Equations (11.3) can be solved by the Wiener-Hopf  method similarly to 
Ref. 19. Their solutions are 

where 

fh(2)= Gr f+~ Gr + n de) 

i f  +~ f+~176 de)' G(+'(e) ') 
limp(2) = (2#) 2 - ~  e-i~aG(-)(e)) de) -oo -~-- a) --7- i~ 

exp(-I n - 2S1 [e)' l/2) - exp[ - (n  + 2S)leo'  I/2 ] 
• 

(1 -- e -"l~~ 2 cosh(e)'/2) 

• exp(--ie)'/n In H/TH) 

(21rn)1/2 ( ie)n + O ) 

G(-)(e)) = G(+)(--e)) = 

/"(1 + ie)/2n) 

/"(1/2 + ie)/2n)r(1 + kon/2n) 

(11.4a) 

(11.4b) 

(11.5) 

are analytical functions in the lower and upper half-planes, respectively. 
From (11.4a) and the condition (11.2a) we find 

B + 1/J = ln(H/Tz) (11.6) 

where the scale 

r . / r ~ -  
2n(n/2e) "/2 2ev e_~/J 

r(n/2) ' rK= 

is the Kondo temperature. 
The condition ( l l .2b)  

magnetization the expression 
Section 2. 

together with 
of which we 

( l l .4b)  yield the impurity 
have already discussed in 
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12. LARGE-n LIMIT 

Let us discuss the behavior of the impurity magnetization at n--, oo. 
First consider the case n /2S  fixed. Then ( l /n) I ln  H/T~r I (also should be kept 
fixed) and 

in f+oo dco ei2'~ + O) *~ sinh[(2S/n)xco] (12.1) 
Mimp --  ~ oo co -- i0 F(1 + icox) sinh cox 

where we set x = nZo where z o is given by (2.5). 
The expression reveals that the Gell-Mann-Low function 

n ~  m has a limit 

lim fl(n, J)  = JZfl(nJ) 
R ---~O0 

(2. at 

(12.2) 

Therefbre the fixed point is the order of 1In ~ J*. Note that it can hardly be 
treated by the 1In expansion. The expressions (12.1), (12.2) can be treated 
as a new theory with the two-loop approximation 

J~(X) = - -X  2 ~- X 3 (12.3a) 

1 1 
- - +  l n x = l n H / T t t  (12.3b) 
x 5 

O0 

Mimp = 2 an xn (12.3c) 
t / ~ 0  

Next consider the case when n -- 2S/> 0 is kept fixed including the n = 2S 
case, In this case In(H/Tn)  should be kept fixed: 

Mimp(H ) - -  
8~z -oo (co -- iO) 3/2 

exp [2ico ln(H/T~) -- 7r(n - 2S)Icol] V(1 + ico) 
• (12.4) 

cosh(~zco)F(1/2 + ico) 

At ln(H/TH)>> 1 

Mimp(H ) = 1 in l n ( H / T z )  11/2[ 1 + O(1/ ln(H/Tn))]  
7r 

(12.5) 

and smoothly depends on n and S. 
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The difference between the cases n = 2S and n > 2S arises at H ~ T n. 
There is the Fermi liquid law for n = 2S. 

r(k + l) 
Mimp(m- L k! (k + -  4re k=0 ~)l/Z (H/TH) 2k+1 (12.6) 

For n -- 2S > 0, from (12.4) we have 

vfn  (n - 2S) 
/ i m p ( H ) -  -0-~n/~i7 ~ [1 + O(1/ln(Tn/H)) ] (12.7) 

This region can also be controlled by the perturbation theory. Factually at 
z >> 1/n, the leading term in (2.3) is the second-loop contribution: 

dz/d In H = --nz 3 

It means the physical quantities can be expanded in series in [ln(H/TK) ] 1/2. 

13. CONCLUSION 

The multichannel Kondo problem is an interesting example of the 
quantum many-body theory which is asymptotically free at high energy scale 
and has three different kinds of low-energy behavior depending on the 
parameters n and S. There are two strong coupling limit fixed points of 
different character at n < 2S and n -- 2S and finite coupling fixed point at 
n > 2S obeying the scaling low-energy power laws. 

All these regimes are studied on the basis of the exact solution. The 
ground state is the spin and orbital singlet, but at n > 2S it has infinite 
polarizability. 

The magnetic susceptibility is 

tH -1+2/" at T = 0 ,  H ~ T  K (13.1) 
X ~  iT_1+4/n+2 at H = 0 ,  T ,~TK(Ref .  15 ) 

According to Eq. (13.1) the relative dimensionality between the 
magnetic field and temperature differs from unity 

H ~  T a, A = n/n + 2 

It means that in the scaling regime H, T ~  T x e - "  any physical quantity 
has the characteristic behavior 

f ( H ,  T) = Ta f (H /Ta ;  T~K -1) 

where Af is the dimension of the quantity. 
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In the end of  the paper  we note  that  n o w  all k n o w n  mode l s  t r ad i t iona l ly  

s tudied in the t heo ry  o f  di lute  magne t i c  a l loys  are in tegrable  and so lved  

exact ly .  
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